November 22, 2024

OPEN-TEC ศูนย์รวมองค์ความรู้ด้านเทคโนโลยี (Tech Knowledge Sharing Platform) ภายใต้การดูแลของ TCC TECHNOLOGY GROUP ขอนำเสนอมุมมองในการเตรียมความพร้อมขององค์กรในการใช้ AI จาก คุณโชติวิทย์ จารุวรรณสถิต และ คุณบุญชัย รัตนพิเศษ สองผู้บริหารจากเดลล์ เทคโนโลยีส์ ที่มาร่วมกันแบ่งปันข้อมูลบนเวทีให้ความรู้ภายใต้หัวข้อ “Navigating AI Frontier” ซึ่ง ทีซีซี เทคโนโลยี (TCCtech) และเดลล์ เทคโนโลยีส์ (Dell Technologies) ร่วมกันจัดขึ้น โดยทั้งสองท่านเห็นพ้องกับประเด็นบนเวที World Economic Forum 2024 ในเรื่องการทำงานที่ต้องสอดประสานกันของทั้ง 3 องค์ประกอบสำคัญ ได้แก่ M+A+D; Machine Learning, กระบวนการทำ Analytics และ Data ข้อมูลที่มีปริมาณมหาศาลเป็นสิ่งที่ผลักดันให้เกิดการนำ AI มาใช้งาน บนแพลตฟอร์มที่มีความยืดหยุ่น ชาญฉลาด โดยที่ไม่สามารถละเลยข้อคำนึงในหลักการ AI TRiSM (Trust, Risk, and Security Management) และผสมผสานเทคโนโลยีที่เหมาะสม

 AI ส่งผลกระทบต่อทุกระดับ

ในยามที่ AI กำลังเข้ามามีอิทธิพลและแทรกซึมในองค์กรด้านใดด้านหนึ่งไม่มากก็น้อย หลักการของ “AI in Everything” ได้ถูกนำมาปรับใช้กับหลาย ๆ กระบวนการ เช่น Product Development, Sales Process, Training System, Post Sales Support การตระหนักว่า AI จะไม่ได้เข้ามาแทนที่แรงงาน แต่เป็นการสร้างโอกาสในการพัฒนาศักยภาพของบุคลากร ซึ่งยังต้องอาศัยประสบการณ์ ความเข้าใจ ที่พัฒนาเป็นองค์ความรู้ และมุมมองการตัดสินใจของทีมงาน ทำงานร่วมกันในลักษณะ “Human-Machine Interaction” เป็นการปูทางไปสู่ Digital Transformation ที่ประสบความสำเร็จ ตัวอย่างการทำงานร่วมกันในปัจจุบัน เช่น Software Development, Productivity Improvement, Knowledge Management ฯลฯ

แนวทางสำคัญสำหรับการนำ AI มาใช้ในระดับองค์กร

AI กำลังกลายเป็นเครื่องมือสำคัญในการขับเคลื่อนธุรกิจสู่อนาคต องค์กรชั้นนำทั่วโลกต่างมุ่งนำ AI มาประยุกต์ใช้เพื่อเพิ่มประสิทธิภาพการทำงาน พัฒนาสินค้าและบริการ ตลอดจนสร้างกลยุทธ์ทางธุรกิจที่เหนือชั้น แต่การนำ AI มาใช้ในระดับองค์กรนั้น ไม่ได้เกิดขึ้นโดยง่าย จำเป็นต้องมีการวางแผนอย่างรอบคอบ คุณโชติวิทย์และคุณบุญชัย ได้เชื่อมโยง 2 แนวทางสำคัญที่ผนวกกับแนวคิดของ AI Maturity Index ดังนี้

1. การตระหนักรู้ในตนเองและความพร้อม

· ความสอดคล้องของการจัดการการกำกับดูแลข้อมูล (Compliance) ความพร้อมของบุคลากรด้วยทักษะที่เหมาะสม (People Skills Set) และการนำทางลำดับชั้นขององค์กร (Hierarchy) ถือเป็นข้อพิจารณาที่สำคัญ

· การระบุเป้าหมายและปัญหาทางธุรกิจ (Business Use Case) และจัดลำดับความสำคัญของโครงการตามผลกระทบ ไม่ว่าจะเป็นการเพิ่มประสิทธิภาพในการจัดการต้นทุน การส่งเสริมความยั่งยืน หรือการบรรลุเป้าหมายเชิงกลยุทธ์อื่น ๆ

· การวัดผล การทดสอบความเป็นไปได้ และความคุ้มค่าของการลงทุน AI ผ่านตัวชี้วัดที่ชัดเจนและผลลัพธ์ที่จับต้องได้ถือเป็นสิ่งสำคัญในการพิจารณา

2. กระบวนการทำ Data Operation

· ร้อยละ 80 ของเวลาในการดำเนินงานด้านข้อมูล หมดไปกับขั้นตอนการแยก การแปลง และการถ่ายโอนข้อมูล (ETL) พร้อมทั้งจัดการกับข้อกังวลด้านความปลอดภัย กับการรวบรวมข้อมูลจากหลากหลายรูปแบบและแหล่งที่มา

· การเลือกใช้โซลูชัน หรือ Software Ecosystem ที่ยืดหยุ่น เป็นแบบเปิดและปรับเปลี่ยนได้ (open-source and adaptable platforms) เริ่มต้นจากส่วนงานย่อย ๆ แล้วจึงค่อย ๆ ขยายขนาด และจัดลำดับความสำคัญของมุมมองการจัดการด้านไอทีช่วยให้มั่นใจว่าการเปลี่ยนแปลงจะราบรื่น

 แม้การนำ AI มาใช้ในองค์กรจะเต็มไปด้วยโอกาสและประโยชน์มากมาย แต่ก็ยังมีความท้าทายและข้อควรพิจารณา หลายประการที่องค์กรต้องเผชิญ ได้แก่

· ความซับซ้อนและปริมาณข้อมูลที่ต้องการของ Deep Learning: การผสมผสานระหว่าง Data Lake และ Data Warehouse ไปสู่รูปแบบ “Data Lakehouse” ด้วยการจัดการแบบผสมผสาน (Hybrid Approach) โดยใช้ Data Lake เพื่อการจัดเก็บข้อมูลที่หลากหลาย ร่วมกับ Data Warehouse สำหรับข้อมูลที่มีโครงสร้างที่ใช้ในการรายงานและการวิเคราะห์

· IT infrastructure & Data Architecture: ทีมไอทีต้องมีการวางแผนและการจัดการที่ดี เพื่อเตรียมโครงสร้างพื้นฐาน อุปกรณ์ และ Architecture ที่เหมาะสมกับ Use Case ให้พร้อมรองรับความสามารถในการรัน AI Workloads โดยเฉพาะอย่างยิ่งสำหรับ Large Language Models (LLMs) ที่ต้องใช้ GPU ที่มีประสิทธิภาพและพลังงาน รวมถึงการพิจารณาปรับใช้ On Premise, Cloud หรือในลักษณะ Hybrid ที่เหมาะสมกับธุรกิจ

เข็มทิศสู่ความสำเร็จในการใช้ AI ให้เกิดประโยชน์สูงสุด ได้แก่

· AI Deployment Model สามารถเริ่มได้จากสิ่งใกล้ตัวและเทคโนโลยีภายในองค์กรที่พร้อมใช้งาน เพียงแค่อาศัยการเทรนเพิ่มเติมภายใต้องค์ความรู้เดิม

· เลือกใช้โซลูชันต่าง ๆ ที่เหมาะสม จากผู้ให้บริการมากมายที่ตอบโจทย์ เพื่อให้ได้ผลลัพธ์ที่ดีที่สุด

· ลงทุนในระบบที่ยืดหยุ่น คล่องตัวและปรับเปลี่ยนได้ ซึ่งสามารถพัฒนาให้สอดรับกับความท้าทายที่ไม่หยุดนิ่ง

· วางแผนและจัดสรรการลงทุนการใช้ทรัพยากรให้ทันกับความก้าวหน้าทางเทคโนโลยี เพื่อการเติบโตอย่างต่อเนื่อง

เมื่อได้เห็นความสามารถที่เพิ่มขึ้นของ AI ก็ชัดเจนว่าอนาคตนั้น อุตสาหกรรมต่าง ๆ จะมีความชาญฉลาด ตั้งแต่อาคารและโรงงาน ไปจนถึงทุกหน่วยในองค์กรที่ได้พยายามนำ AI มาใช้ ซึ่งการร่วมมือกับผู้เชี่ยวชาญด้านเทคโนโลยี ทั้งในฝั่ง Solution Provider และ Technology Provider จะสามารถสร้างสรรรค์พลังของ AI ให้ปลดล็อกศักยภาพที่แท้จริง

ทั้งหมดนี้เป็นส่วนหนึ่งของเนื้อหาที่ OPEN-TEC ได้รวบรวมไว้จากงานสัมมนา “Navigating AI Frontier” ที่จัดขึ้นโดย ทีซีซี เทคโนโลยี และเดลล์ เทคโนโลยีส์

สองผู้นำด้านเทคโนโลยี ได้แก่ ทีซีซี เทคโนโลยี (TCCtech) และเดลล์ เทคโนโลยีส์ (ประเทศไทย) (Dell Technologies) ร่วมกันจัดเวทีให้ความรู้ ภายใต้หัวข้อ “Navigating AI Frontier” โดยได้รับเกียรติจากผู้ทรงคุณวุฒิจากสถาบัน IMC ผู้บริหารของ TCCtech และ เดลล์ เทคโนโลยีส์ (ประเทศไทย) เข้าร่วมแบ่งปันประสบการณ์การนำ AI ไปใช้งานในหลายอุตสาหกรรม อัพเดทผลิตภัณฑ์และบริการด้านเทคโนโลยีรวมถึงแนะนำโซลูชันที่ตอบโจทย์เพื่อช่วยเพิ่มขีดความสามารถและประสิทธิภาพของการบริหารจัดการธุรกิจ OPEN-TEC ศูนย์รวมองค์ความรู้ด้านเทคโนโลยี (Tech Knowledge Sharing Platform) ภายใต้การดูแลของ TCC TECHNOLOGY GROUP

ขอนำเสนอประสบการณ์และผลลัพธ์จริงจากทีมงาน TCCtech ซึ่งนำความเชี่ยวชาญด้านเทคโนโลยีและความสามารถของ AI มาประยุกต์ใช้กับโครงการต่าง ๆ ของลูกค้าให้สามารถบริหารอาคารได้มีประสิทธิภาพมากขึ้น จัดการภาคอุตสาหกรรมได้อย่างชาญฉลาดยิ่งขึ้น ด้วย AI

ตัวอย่างการใช้เทคโนโลยีเพื่อเพิ่มประสิทธิภาพการบริหารจัดการโซลูชันภายในโครงการอสังหาริมทรัพย์ เช่น การใช้ Video Analytics วิเคราะห์ภาพใบหน้า เครื่องแบบ เพื่อคัดแยกกลุ่มแรงงานที่เข้ามาทำงานในพื้นที่แต่ละจุด สามารถจำแนกเพศ สังกัด แม้กระทั่งพฤติกรรมของแรงงานที่ก่อให้เกิดความเสี่ยง เช่น การสูบบุหรี่ในพื้นที่ควบคุม ด้วยการสร้างเงื่อนไขให้ AI เรียนรู้ คาดการณ์ และวิเคราะห์จากลักษณะที่ปรากฎ ซึ่งมีความแม่นยำสูง ละเอียดถึงระดับดวงตา สามารถค้นหาบุคคลหรือยานพาหนะในพื้นที่ภายในเวลาอันรวดเร็ว นอกจากนี้ ยังมีการใช้งาน AI เพื่อบริหารจัดการสภาพการจราจร และสนับสนุนงานอาชีวะอนามัย เป็นต้น ตัวอย่างถัดมา เป็นการบริหารจัดการพลังงาน ซึ่งโครงการขนาดใหญ่จะมีการใช้พลังงานจำนวนมาก ข้อมูลการใช้พลังงานจากระบบเซนเซอร์ต่าง ๆ เช่น อุณหภูมิ น้ำเย็น แสงสว่าง และความเร็วลม ซึ่งมีปริมาณมหาศาลจะถูกบันทึกไว้บน Data Server เพื่อรองรับการทำงานของซอฟต์แวร์เพื่อประมวลผล ระบบปรับอากาศจะทำงานอัตโนมัติโดยเปรียบเทียบข้อมูลต่าง ๆ เช่น อุณหภูมิภายในและภายนอกอาคาร ปริมาณน้ำฝน ภาพจากกล้องวงจรปิด และความหนาแน่นของ Heat Map เพื่อปรับอุณหภูมิของน้ำเย็นและความเร็วลมให้เหมาะสม

 สำหรับการนำ AI ไปใช้ในภาคอุตสาหกรรม ซึ่ง TCCtech ได้พัฒนาโซลูชัน AI ให้ครอบคลุมทุกแง่มุมของธุรกิจ เพื่อตอบโจทย์ความต้องการของลูกค้า โดยใช้เทคนิคต่าง ๆ ดังนี้

· Rule-Based: การกำหนดกฎเกณฑ์ให้ AI ทำงานตาม

· Optimization: กระบวนการค้นหาคำตอบที่เหมาะสมที่สุดภายใต้ข้อจำกัดที่มีอยู่

· Statistics: โดยการผสมผสานหลากหลายเทคนิควิธีเข้าด้วยกันมาเป็นผลวิเคราะห์และตัวตัดสินใจ

· Machine Learning: การให้แมชชีนเรียนรู้จากข้อมูล

· Deep Learning: การให้แมชชีนเรียนรู้ข้อมูลเชิงลึกด้วยการเลียนแบบการทำงานของโครงข่ายประสาทมนุษย์

ตัวอย่างการใช้งาน AI จากต้นน้ำถึงปลายน้ำ ในภาคอุตสาหกรรม

· Production Planning: การวางแผนการผลิตสินค้า โดยคำนึงถึงปัจจัยต่าง ๆ เช่น ความต้องการของตลาด กำลังการผลิต และวัตถุดิบ เพื่อเพิ่มความแม่นยำ และลดเวลาการทำงาน

· Inventory Planning: วางแผนการจัดการสินค้าคงคลัง โดยใช้ Route Optimization มาช่วยให้ Operation ที่เคยทำงานแยกกัน ให้สามารถมองเห็นข้อมูลทั้งระบบและลดระยะทางการจัดส่งสินค้า และเวลาในการทำงาน

· Vehicle Routing Problem: ช่วยแก้ปัญหาการวางแผนเส้นทางขนส่งสินค้า ช่วยให้ประหยัดค่าขนส่งสินค้า และเวลาวางแผนขนส่งได้

· Demand Forecasting: การพยากรณ์ความต้องการสินค้าของผู้บริโภค

· Retail Outlet: การประเมินคุณภาพร้านค้า โดยใช้ ML วิเคราะห์ข้อมูล Actual Transaction ด้วยเทคนิค Local Outlier Factor ช่วยในการตรวจสอบและระบุ Indicator ที่ส่งผลต่อคุณภาพการให้บริการของร้านค้า

· Bottle Recycle Classification: การคัดแยกขวดรีไซเคิล ไปจัดการในรูปแบบต่าง ๆ โดยใช้ AI วิเคราะห์ภาพจากกล้อง

ความท้าทาย และอนาคตของ AI

การนำ AI ไปใช้ในบางกรณี ยังมีข้อจำกัด เช่น เทคโนโลยี Deep Learning ที่แม้จะทำงานได้อย่างแม่นยำ แต่อาจยังไม่สามารถทำงานได้ทันเวลาในบางสถานการณ์ อย่างเช่น การวิเคราะห์ภาพขวดรีไซเคิลบนสายพานลำเลียงความเร็วสูง หรือข้อมูลที่เก็บมาบางประเภท ไม่เพียงพอหรือไม่มีคุณภาพต่อการนำไปสอน AI อย่างไรก็ตาม เป็นที่แน่นอนแล้วว่าเทคโนโลยี AI จะได้รับการพัฒนาอย่างต่อเนื่อง และมีบทบาทสำคัญในภาคธุรกิจ โดยเฉพาะ Gen AI ที่จะเข้ามาช่วยแก้ปัญหาที่ซับซ้อนและสร้างประสิทธิภาพให้กับธุรกิจมากขึ้น

ทั้งหมดนี้เป็นส่วนหนึ่งของเนื้อหาที่ OPEN-TEC ได้รวบรวมไว้จากงานสัมมนา “Navigating AI Frontier” ที่จัดขึ้นโดย ทีซีซี เทคโนโลยี และเดลล์ เทคโนโลยีส์ (ประเทศไทย)

 บทความโดย OPEN-TEC

X

Right Click

No right click