December 21, 2024

จากการทดลองสู่การใช้จริง - การนำ Gen AI ไปใช้งานในปี 2024

March 19, 2024 1853

การก้าวตามเทคโนโลยีใหม่อย่าง Generative AI ที่มีการพัฒนาอย่างรวดเร็วอาจเป็นเรื่องที่ท้าทายและน่ากลัว ไม่มีใครรู้เลยว่าบริษัทที่ใช้แนวทาง "รอดูไปก่อน" จะถูกทิ้งไว้ข้างหลังในขณะที่ระบบดิจิทัลเติบโตขึ้นอย่างรวดเร็วในช่วงเริ่มต้นของโควิด-19 และตอนนี้เราก็กำลังอยู่ในอีกหนึ่งช่วงเวลาเปลี่ยนผ่านที่สำคัญอีกครั้งของการปรับตัวกับการเข้ามาถึงอย่างรวดเร็วของเทคโนโลยี Generative AI โดย Google Cloud คาดการณ์ว่าอุตสาหกรรมต่างๆ จะพัฒนาไปพร้อมกับ Gen AI ดังนี้:

การขายปลีก

ผู้ค้าปลีกรู้ดีว่าแบรนด์จะดีได้ก็ต่อเมื่อบริการลูกค้านั้นเป็นที่พึงพอใจ ซึ่ง Gen AI ที่ทำงานดั่งตัวแทนเสมือน (Virtual Agent) สามารถช่วยแบ่งเบาภาระจากศูนย์ติดต่อลูกค้าของผู้ค้าปลีกได้ ผ่านการเปิดใช้งานแชทบอทที่ให้การปฏิสัมพันธ์เหมือนมนุษย์ได้ทันที เพื่อช่วยให้ผู้ซื้อสามารถได้คำตอบที่ต้องการอย่างง่ายดาย เช่น การช่วยเหลือทางด้านความแตกต่างระหว่างผลิตภัณฑ์ หรือการแลกเปลี่ยนคำสั่งซื้อ เป็นต้น นอกจากนี้ Gen AI ยังสามารถขับเคลื่อนการค้าแบบสนทนาเพื่อช่วยให้ผู้ซื้อค้นพบสิ่งที่พวกเขากำลังมองหาและลดอัตราการละทิ้งตะกร้าสินค้า ลองนึกภาพการมีสไตลิสต์ส่วนตัวเสมือนจริงที่สามารถโต้ตอบกับผู้ซื้อและแนะนำสินค้าที่ปรับให้เหมาะกับคำถามหรือความชอบของผู้ซื้อแต่ละราย และลองจินตนาการถึงสิ่งนี้ในวงกว้าง แล้วคุณจะเข้าใจว่า Gen AI เป็นโอกาสที่น่าตื่นเต้นสำหรับผู้ค้าปลีกเพียงใด

ยิ่งไปกว่านั้น Gen AI ยังช่วยเพิ่มความคล่องตัวให้แก่ผู้ค้า และช่วยเร่งการจัดการแคตตาล็อกผลิตภัณฑ์ที่ใช้เวลานาน ซึ่งเป็นหนึ่งในอุปสรรคสำคัญของการค้าปลีกเนื่องจากผู้ขายต้องจัดการกับสินค้าคงคลังที่หมุนเวียนอยู่ตลอดเวลา ทั้งนี้ด้วยการทำงานแบบอัตโนมัติผ่าน Gen AI ผู้ค้าปลีกสามารถอัปเดตสินค้าคงคลังที่แสดงปริมาณและรูปแบบอย่างแม่นยำแบบเรียลไทม์ พร้อมรับรูปภาพจากผู้ขาย จัดเรียงและจัดหมวดหมู่ผลิตภัณฑ์ตามคำค้นหายอดนิยมและคำอธิบายที่เกี่ยวข้อง และเขียนคำอธิบายสินค้าที่ช่วยให้ค้นพบสินค้าได้ง่าย

นักการตลาดค้าปลีกที่มีความชำนาญสามารถใช้คำอธิบายสินค้าเหล่านี้สำหรับสร้างข้อความโฆษณาที่น่าสนใจออกมาได้หลายรูปแบบเพื่อให้โดนใจกลุ่มผู้บริโภคที่แตกต่างกัน ตัวอย่างเช่น การใช้ภาพกระเป๋าถือหนึ่งใบ และกำหนดกลุ่มเป้าหมายด้วยข้อความโฆษณาที่แตกต่างกันไปยังนักช้อปประเภทต่างๆ อาทิ กลุ่มที่ใส่ใจสิ่งแวดล้อม กลุ่มคนมิลเลนเนียลที่รักในการเดินทาง และกลุ่มคุณแม่มือใหม่ จากนั้น นักการตลาดสามารถใช้ Gen AI เพื่อช่วยในการสร้างฉากหลังภาพถ่ายผลิตภัณฑ์ที่แตกต่างกันสำหรับกระเป๋าใบนั้น และทำการทดสอบ A/B กับกลุ่มเป้าหมายที่แตกต่างกัน สิ่งนี้ไม่เพียงช่วยประหยัดเวลาของผู้ค้าปลีก แต่ยังช่วยเพิ่มรายได้และเสริมการมีส่วนร่วมของผู้บริโภคอีกด้วย

บริการทางการเงิน

อุตสาหกรรมบริการทางการเงินเป็นหนึ่งในอุตสาหกรรมที่ขับเคลื่อนด้วยข้อมูลมากที่สุดในโลก และ Gen AI สามารถช่วยให้สถาบันการเงินวิเคราะห์ข้อมูล สร้างข้อมูลเชิงลึก และตัดสินใจได้ดีขึ้น  บริการทางการเงินส่วนใหญ่มีคำศัพท์และบริบทที่เฉพาะเจาะจงเป็นของตัวเอง โดยผมมองว่าเราจะเห็นการเพิ่มขึ้นของ LLM ที่ได้รับการปรับแต่งอย่างละเอียด โดยเป็นโมเดลภาษาที่ได้รับการเทรนล่วงหน้า และเทรนเพิ่มเติมเกี่ยวกับชุดข้อมูลของข้อความและโค้ดที่มีขนาดเล็กลงและเฉพาะเจาะจงมากขึ้น ซึ่งช่วยให้โมเดลเข้าใจและตอบสนองต่อพรอมต์และคำถามที่เกี่ยวข้องกับหัวข้อหรือโดเมนเฉพาะได้ดียิ่งขึ้น เช่น การเปลี่ยนแปลงกฎระเบียบหรือมาตรฐานการรายงานทางการเงิน เป็นต้น

นอกจากนี้ คุณภาพของเอาท์พุต Gen AI ยังได้รับการปรับปรุงโดยการการตรวจสอบความสมเหตุสมผล หรือ grounding โมเดล ที่เชื่อมโยงข้อความที่สร้างขึ้นกับข้อมูลและบริบทในโลกแห่งความเป็นจริง ซึ่งหมายความว่าทุกครั้งที่มีการตัดสินหรือการประเมิน โมเดลสามารถอ้างอิงเชิงอรรถหรือเชื่อมโยงกลับไปยังข้อมูลสนับสนุนได้โดยตรง ทั้งนี้ โมเดล Gen AI ที่อธิบายได้ดังกล่าว จะช่วยให้สถาบันการเงินสามารถอธิบายกระบวนการตัดสินใจให้กับลูกค้าได้อย่างโปร่งใส และสร้างความไว้วางใจและความมั่นใจในบริการที่ขับเคลื่อนด้วย AI ที่พวกเขานำเสนอ เรียกได้ว่าทั้งหมดนี้จะทำโดยมีมนุษย์คอยดูแลและควบคุมระบบ AI ที่ใช้ในการตัดสินใจเรื่องการเงินของลูกค้า ด้วยวิธีนี้ ธนาคารสามารถทำให้แน่ใจว่าโมเดล AI เป็นไปตามกฎระเบียบ ลดความเสี่ยง และรักษาความไว้วางใจของลูกค้าได้อย่างมีประสิทธิภาพ

 การดูแลสุขภาพ

โควิด-19 ทำให้เกิดแรงกดดันด้านต้นทุน การขาดแคลนบุคลากร เทคโนโลยีที่กระจัดกระจาย และความซับซ้อนด้านการบริหารที่อุตสาหกรรมการดูแลสุขภาพต้องเผชิญ แต่การเข้ามาของ Gen AI ในอีกสามปีต่อมานั้น สามารถช่วยบรรเทาความกดดันบางส่วนเหล่านี้ได้

ตัวอย่างเช่น Gen AI สามารถแบ่งเบาภาระงานด้านการบริหารและภาระทางปัญญาสำหรับแพทย์ที่มีเวลาจำกัด โดยการค้นหาข้อมูลที่เกี่ยวข้องท่ามกลางชุดผลลัพธ์จำนวนมาก การแยกย่อยรายงานและไฟล์ขนาดยาวเพื่อการใช้งานที่รวดเร็วขึ้น และช่วยเหลือด้านเอกสารทางคลินิก โดย Gen AI ยังสามารถวิเคราะห์และกำหนดค่าข้อมูลที่มีอยู่ในบันทึกสุขภาพอิเล็กทรอนิกส์ และรายงานการวินิจฉัยนับล้านที่อธิบายสภาพของผู้ป่วยและโรงพยาบาล รวมถึงข้อมูลในโหมดที่แตกต่างกันโดยสิ้นเชิง เช่น การสแกนด้วยภาพ ผลการตรวจจากห้องห้องปฏิบัติการ และการสัมภาษณ์ผู้ป่วย ทำให้แพทย์สามารถตอบคำถามทางการแพทย์ได้แม่นยำและปลอดภัยยิ่งขึ้น และยังสร้างข้อมูลเชิงลึกใหม่ๆ เกี่ยวกับสุขภาพและการดูแลผู้ป่วยได้อีกด้วย

เช่นเดียวกับในด้านการเงิน มนุษย์ยังคงเป็นศูนย์กลางของกระบวนการนี้ อย่างไรก็ตาม สิ่งที่ Gen AI มอบให้คือเครื่องมือใหม่ที่ทรงพลังในการประมวลผลและทำงานที่น่าพึงพอใจมากขึ้น ที่สามารถช่วยลดความน่าเบื่อของกระบวนการงาน จากข้อมูลขององค์การอนามัยโลก ปัจจุบันจำนวนพยาบาลมีประมาณ 28 ล้านคนทั่วโลก ซึ่งถ้าเราสามารถช่วยพวกเขาได้เพียงห้านาทีต่อวัน นั่นเท่ากับเป็นเวลา 266 ปีที่จะมุ่งเน้นไปที่การดูแลผู้ป่วย

สรุปแล้ว Gen AI จะมาเปลี่ยนแปลงธุรกิจจึงเปิดกว้างแบบไม่มีที่สิ้นสุด ด้วยความสามารถในการสแกนข้อมูลที่มีโครงสร้างและไม่มีโครงสร้างจำนวนมหาศาล และโต้ตอบกับผู้คนในภาษาธรรมชาติ รวมถึงการระบุรูปแบบแพทเทิร์น เรียนรู้ และสร้างข้อความ รูปภาพ โค้ด และเนื้อหาอื่นๆ อีกมากมาย

ขณะที่ Gen AI เปลี่ยนแปลงจากช่วงทดลองสู่การใช้งานจริงในปี 2024 ผมตั้งตารอที่จะได้เห็นวิธีที่บริษัทต่างๆ ใช้งาน Gen AI เพื่อปลดล็อกประสิทธิภาพและโอกาสในการสร้างรายได้อย่างปลอดภัยและครอบคลุม ซึ่งท้ายที่สุดแล้วจะขับเคลื่อนมาตรฐานใหม่ที่ดียิ่งขึ้นในอุตสาหกรรมต่างๆ ต่อไปอย่างแน่นอน

 

บทความ  : This email address is being protected from spambots. You need JavaScript enabled to view it.This email address is being protected from spambots. You need JavaScript enabled to view it. Country Director, Google Cloud ประเทศไทย

Rate this item
(0 votes)
Last modified on Tuesday, 19 March 2024 13:06
X

Right Click

No right click